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Abstract 
IMPORTANCE The development of Artificial Intelligence (AI) and other machine diagnostic systems, also 
known as Software as a Medical Device (SaMD), and its recent introduction into clinical practice, 
requires a deeply-rooted foundation in bioethics, for consideration by regulatory agencies and other 
stakeholders around the globe. 

OBJECTIVES Initiate a dialogue on the issues to consider when developing a bioethically sound 
foundation for AI in medicine, based on images of eye structures, for discussion with all stakeholders.  

EVIDENCE REVIEW The scope of the issues and summaries of the discussions under consideration by the 
Foundational Principles of Ophthalmic Imaging and Algorithmic Interpretation Working Group, as first 
presented during the Collaborative Community on Ophthalmic Imaging inaugural meeting on September 
7, 2020, and afterwards in the working group. 

FINDINGS AI has the potential to fundamentally improve healthcare access and patient outcome, while 
decreasing disparities, lowering cost, and enhancing the care team. Nevertheless, substantial concerns 
exist. Bioethicists, AI algorithm experts, as well as the Food and Drug Administration (FDA) and other 
regulatory agencies, industry, patient advocacy groups, clinicians and their professional societies, other 
provider groups, payors, (“stakeholders”), working together in collaborative communities to resolve the 
fundamental ethical issues of non-maleficence, autonomy and equity, is essential to attain this 
potential. Resolution impacts all levels of the design, validation and implementation of AI in medicine. 
Design, validation and implementation of AI warrant meticulous attention. 

CONCLUSIONS AND RELEVANCE The development of a bioethically sound foundation may be possible if 
it is based in the fundamental ethical principles non-maleficence, autonomy and equity, for 
considerations for the design, validation and implementation for AI systems. Achieving such a 
foundation will be helpful for continuing successful introduction into medicine, before consideration by 
regulatory agencies. Important improvements in accessibility and quality of healthcare, decrease in 
health disparities, and lower cost can thereby be achieved. These considerations should be discussed 
with all stakeholders and expanded upon as a useful initiation of this dialogue. 

1 Introduction 
The Collaborative Community on Ophthalmic Imaging (CCOI) formed in 2019 to advance innovation of 
ophthalmic imaging with a focus on Medical Devices utilizing Artificial Intelligence. 1 2 

The CCOI’s Foundational Principles of Ophthalmic Imaging and Algorithmic Interpretation Working 
Group (FPOAI), was established in March 2020 to generate consensus on a bioethical foundation for 
Artificial Intelligence (AI) of Ophthalmic Imaging, for consideration by all stakeholders in the healthcare 
system, including but not limited to the US Food and Drug Administration (FDA) and other regulatory 
agencies. Its processes draw on the expertise of bioethicists, 3, 4 AI algorithm experts, FDA and other 
regulatory agencies, as well as industry, patients and patient advocacy groups, clinicians and their 
professional societies, and payors,5 to identify best practices for addressing novel issues emerging with 
AI conception, evaluation, and implementation, including validation, reference standards, performance 
metrics, accountability for output, bias, and impacts on workflow.   
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The terms Artificial Intelligence * and Augmented Intelligence (AI) are used interchangeably for systems 
that perform tasks that mimic human cognitive capabilities.1 Such anthropomorphic AI systems, which 
are becoming more common, are not explicitly programmed, and instead learn from data that reflect 
highly cognitive tasks, typically performed by trained healthcare professionals. In some cases, these AI 
systems are used to aid healthcare professionals.6 The introduction of AI in medicine has the potential to 
improve quality, reduce costs, diminish health disparities and increase accessibility, as well as enhance 
the care team, at both the individual and population levels.7, 8 Its introduction thus aligns with the 
American Medical Association’s principle of quadruple aim of improved outcomes, lower cost, improved 
patient experience, and improved clinician experience.9 After the first FDA De Novo clearance for an 
autonomous AI,10 in other words, an AI that makes a clinical decision without human oversight,10 AI has 
entered mainstream  healthcare, including standards of care.11 The use of AI in the ophthalmic setting 
has been studied for many applications 12 including in diseases such as diabetic retinopathy, 13 
retinopathy of prematurity,14 and macular degeneration,, 15 glaucoma,16 and  cancer,17 as well as many 
other ocular conditions, such as those of the cornea18 and other parts of the anterior segment.19  

To maximize AI’s benefits, many ethical, economic, and scientific issues, including algorithmic bias, 
safety, efficacy and equity - terms that will be explained below - need to be addressed in a transparent 
fashion, for acceptance by all stakeholders. So far, studies to establish scientific evidence for the safety, 
and other criteria of AI in general are quite limited, with few exceptions.20 In a meta-analysis of 81 AI 
clinical trials, only nine were prospective and just six were tested in a real-world clinical setting.21 The 
relationship of the AI’s diagnostic accuracy to clinical outcomes in this widely cited study was not even 
mentioned, and more generally, in an analysis of 126 published diagnostic accuracy studies, only 12% 
reported any statistical test of a hypothesis related to the study objectives. 22  

Recently, reporting standards for AI studies have been published, such as CONSORT-AI23 , as well as an AI 
extension to Standards for Reporting of Diagnostic Accuracy Studies (STARD) 24 currently under 
development. While potentially beneficial, such standards may not provide sufficient information to 
help inform regulatory evaluation and have not been recognized by FDA. See also FDA’s Recognized 
Consensus Standards. 25 While reporting standards may have benefits in improving consistency, there 
may be additional considerations beyond these recommendations that are needed for regulatory 
evaluation, many of which are the subject of these “Considerations.” 

This first ‘Considerations’ article to come from our FPOAI working group, presents the scope of the 
issues and concepts, and briefly summarizes the discussion on diagnostic AI and other Software as a 
Medical Device (SaMD) systems that use images of the eye, as first presented during the Collaborative 
Community on Ophthalmic Imaging inaugural meeting on September 7,2020, and later discussed within 
the FPOAI working group.26 Specifically, it describes both clinical constraints for AI systems, as well as 
bioethically founded constraints, derived from the three major bioethical principles non-maleficence, 
equity and autonomy. While, as FPOAI stakeholders, we realize the tremendous potential advantages of 
AI systems, we also realize that substantial concerns also exist from the scientific and clinical 
communities, as well as society at large. Therefore, involvement of 3-5all stakeholders to resolve ethical 
issues including non-maleficence, autonomy and equity, is key.  

 
*) The term artificial intelligence refers to the concept of programming computer systems to perform tasks to 
mimic human cognitive capabilities- such as understanding language, recognizing objects and sounds, learning, and 
problem solving – by using logic, decision trees, machine learning, or deep learning.  
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Design, validation and implementation of diagnostic AI systems warrant meticulous attention. We limit 
the scope of these considerations, for the time being, to AI intended for diagnosis. While therapeutic AI, 
including autonomous AI for prescribing as well as autonomous AI for surgery are on the horizon, we 
decided that these are currently beyond the scope of these “Considerations” given the multiple ethical 
and even theoretical problems that need to be resolved. Furthermore, there is no regulatory guidance 
for AI systems using images of the eye. 

Obviously, the considerations will be commensurate with the risk of harm to the patient, with different 
indications for use, conditions diagnosed, autonomy of the AI, consequences of a missed diagnosis, the 
population at risk and many other factors. Thus, the right balance needs to be considered between 
resource requirements and burden on AI creators27 28 to align with proposed ethical principles on the 
one hand, and risk of patient harm from lack of access to AI systems on the other hand, in order for 
patients, patient populations, and the wider healthcare system, to benefit . 

In addition, while some AI systems are “marketed” medical devices, and under regulatory oversight, 
other AI systems are never marketed. Such ‘homebrew’ AI is used, by the clinicians who developed it, or 
others, in patient care, but is never marketed, and their safety and equity can be of concern.29  

There are many useful resources, such as the reporting guidelines mentioned (e.g., Clinical Evaluation of 
SaMD,26 STARD, 24 , CONSORT-AI,23), clinical practice guidelines (e.g., the American Telemedicine 
Association Telehealth Practice Guidelines for Diabetic Retinopathy30, 31),  standards (e.g.,Digital 
Communications in Medicine (DICOM), 32), and FDA guidance (e.g., “Software as A Medical Device: 
Clinical Evidence guidelines”26) that can be referenced to help mitigate aforementioned concerns. 
Ultimately, we incorporated these useful resources as initial steps in developing “best practices,” and AI 
tailored regulatory frameworks, including Good Machine Learning Practice (GMLP), and other 
equivalents to the more familiar good manufacturing practices (GMP), as has been called for by the US 
General Accounting Office, in its report GAO-21-7SP: Artificial Intelligence in Health Care: Benefits and 
Challenges of Technologies to Augment Patient Care, 33 as well as by regulatory agencies, such as FDA in 
its Digital Health Center of Excellence’s recent Artificial Intelligence/Machine Learning (AI/ML)-Based 
Software as a Medical Device (SaMD) Action Plan.1 

 

2. Clinical Considerations for AI systems 
These Considerations divide the requirements for AI systems into two categories: the clinical 
requirements, covered in this section, and the ethical requirements, derived from a bioethical 
foundation, which will be covered in Section 3. Therefore, this current Section 2 discusses the various 
clinical aspects of AI systems that use images of the eye in some form, conform the scope of the 
Collaborative Community on Ophthalmic Imaging.2 We define images of the eye as topologically ordered 
sets of intensities, which represent physical and pathophysiological processes occurring in the eye, and 
that may reflect conditions of the eye and other conditions of parts of the patient’s body. Specifically, 
we cover intended use, impact, inputs and outputs, and human factor design aspects of the AI system. 

2.1 Intended use of the diagnostic AI system  
The rationale for designing, developing, validating and deploying AI systems includes improving 
individual patient care, population health, and scientific research. Specifically for individual patients - 
improving their quality of care, lowering cost, increase access, decrease health disparities and improving 
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efficiency. For scientific research - discovering new disease mechanisms, and gaining a better 
understanding of a disease.  

2.2 Impact of the diagnostic AI system 
Once the use is identified, the impact of the AI systems can be assessed.  AI systems span a wide range 
of impact, from having no direct impact on an individual patient or group of patients (e.g., inform a 
provider), to having an important, decision-making impact on an individual patient (i.e., drive or treat). 34 
From a regulatory perspective, many AI systems are considered medical devices –SaMD - whereas other 
systems may not meet the definition of a medical device, as definitions differ across regulatory 
agencies.35, 36 We refer to the US FDA’s more narrow definition of medical devices under section 201h, 35  
as modified under section 3060 of the 21st Century CURES act,37 as well as the broader definition used by 
the International Medical Device Regulators Forum (IMDRF).34  Based on those definitions, AI systems 
can be subdivided by impact as follows 

Use case Description  Examples FDA 
oversight 

Population care prioritization and triage with 
potential impact on groups of 
patients and individual patients 

Care pathway assignment Likely35 

Individual patient care    
Assistive AI  assists a clinician who determines 

the patient’s management 
Provides a probability or likelihood of a 
disease or condition, or may highlight 
potential lesions that should be reviewed 
by a specialist. 

Likely35 

Autonomous AI  makes a medical decision without 
input from a clinician.   

For example, an autonomous AI system 
may evaluate for the presence of a 
disease, such as diabetic retinopathy and 
macular edema, or condition and notify 
the user whether the disease/condition is 
present 

Likely35 

Scientific research  not used for individual patient or 
population care, though the results 
of the research may impact 
populations or patients 
downstream. 

Healthcare Analytics Unlikely 

Operations and data 
management 

where this does not impact 
individual patient or population 
care. These often exist within the 
realm of Health Information 
Technology systems as they relate 
to administrative purposes. 

VIM Referral Guidance, a triage system 
from EHRs 

Unlikely 

Clinical Decision Support 
(CDS)  

Informs the clinician by aggregating, 
reformatting, or visualizing data, 
without providing analytical insights 
of the data, in a manner that allows 
the clinician to independently 
review the basis of the information 
provided by the software 

 AI system that suggests a G6PD test 
before prescribing an antimalarial 
therapy.38 

Depends.† 

 
† See ‘Clinical Decision Support Software Guidance’. This explains when a software function qualifies as non-device 
CDS as well as device CDS, and which of these are actively regulated or for which compliance with applicable 
regulation would not be enforced, here: https://www.fda.gov/media/109618/download 
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General wellness – collects physiologic 
information from devices, 
sensors including wearables. 

Smart Watch that captures heart rate Depends.‡ 

Table 1. AI System Impact 

An important aspect of these AI systems is their theoretically unlimited scalability. If the AI system is not 
locked after validation, there is also potentially unlimited configurability.  Once designed and validated, 
the algorithms of a single AI system can be used on hundreds of millions of patients. While the number 
of patients a human clinician may encounter varies greatly based on the health setting and geography 
(e.g., 800-1000 unique patients per year, or during their entire career, no more than approximately 
30,000-40,000 unique patients8), the scale is significantly different than for an AI system. Thus, the 
impact of any benefits or risks stemming from the use of the AI system is massively scaled – and in just 
one year of implementation, possibly a thousand-fold or more than the impact any individual clinician 
can have in their lifetime.  

The training and practice of an individual clinician may be optimal for a specific (sub-)population, based 
on demographics, geographic proximity, and other facts39 – we define this as vernacular medicine. Such 
vernacular medicine may be less generalizable than is often acknowledged. For an AI system at scale, 
such optimality may not necessarily be present, depending on training data as well as other factors. 
While this may increase its value for multiple, but geographically or demographically different groups, it 
may be less optimized for specific groups, and thus this needs to be considered carefully – we cover this 
in more detail in the Ethical Considerations section. Privacy, confidentiality and other clinical data 
security aspects may differ across regions as well. Recently, a concept of federated machine learning has 
been introduced that allows for an aggregated, scalable AI system to fine-tune from independent 
training datasets.40 A more recent concept of federated ML enables remote devices (e.g., mobile 
phones) to collaboratively engage in model learning and improvement that can take place at a more 
local level. Such an approach decouples the machine learning from any global training data that would 
ordinarily be derived from a single discrete storage system. Rather, model training obtains multiple, 
different, localized, and vernacular, datasets. For deployment, the trained AI model the contains no 
reference to the local training data that were used to refine/tune the model. This technique, similar to 
edge-computing, may appear to have benefits. However, there may also be novel risk considerations, 
relating to algorithm or model iteration that would need to be captured for accurate documentation. 
These include training data characterization, GMLP, model version and updates, as well as assumption 
that multiple vernacular datasets are normally distributed can be reduced to a simple distribution 
function. Probable risks of patient harm and benefits of such a federated approach have not been 
sufficiently studied.  

2.3 AI system outputs 
The intended use and impact of an AI system constrains its outputs. According to the IMDRF’s 
definitions of the type of the output (inform, drive, diagnose and treat), as well as the significance of the 
condition (non-serious, serious and critical), outputs can be categorized as follows26: 

 
‡ See ‘Clinical Decision Support Software Guidance’. This explains when a software function qualifies as non-device 
CDS as well as device CDS, and which of these are actively regulated or for which compliance with applicable 
regulation would not be enforced, here: https://www.fda.gov/media/109618/download 
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Type of 
output 

Significance of 
the condition 

Category Clinical context 

Inform non-serious, 
serious or critical 

Risk prediction Suggest specific test-types that may be 
implemented as part of a diagnostic 
workup of a patient based on clinician 
suspicion 

Drive non-serious, 
serious or critical 

Likelihood, probability, or prediction of 
disease 

Used by clinician who understands how 
to interpret the input image (e.g., 
ophthalmic clinician). 

  Saliency, such as highlighting regions of 
interest or specific lesions in an image. 

Used by clinician who understands how 
to interpret the input image (e.g., 
ophthalmic clinician). 

Diagnose or 
Treat 

non-serious, 
serious or critical 

Disease staging. Assistive use case: clinician receives 
specific aspects of the inputs that 
indicate the disease stage and decides 
the stage.  

  Disease staging. Autonomous use case: the user receives 
the disease stage. 

  Screening. Assistive use case: Clinician receives 
specific aspects of the inputs that 
indicate abnormalities and decides 
whether the disease may be present.  

  Screening. Autonomous use case, the user receives 
output on whether the disease may be 
present. 

  Diagnosis Assistive use case, a clinician receives 
specific aspects of the inputs that 
indicate disease specific abnormalities 
and the absence of disease specific 
abnormalities and decides the diagnosis 
by excluding other disease. 

  Diagnosis Autonomous use case, if a specific 
disease is present the system excludes 
other diseases and the user receives a 
diagnosis. An autonomous AI system 
may evaluate for the presence of a 
disease or condition and notify the user 
whether the disease/condition is present 
without showing how the AI system 
arrived at the decision.  

Table 2. AI System outputs 

AI system outputs may be aligned with preferred practice patterns or other standards of care, in order 
to maximize the potential of the AI system to positively impact clinical outcome. This is discussed in 
more detail in Section 3.2, Non-maleficence. 

The term assistive is usually used for those systems where the clinician makes the ultimate medical 
decision, and carries liability for the AI performance, while autonomous is reserved for those systems 
where the AI system makes the ultimate medical decision, and the AI creator carries the liability for the 
AI performance.6 This distinction,  assistive versus autonomous, coupled with intended use, including 
the significance of the condition, have important bearings on the interpretation of risk as well as other 
regulatory implications (e.g., clinical study design). The interaction between physician and AI – who risk 
becoming, as it were, physicians of the magenta,41 and too dependent on monitoring diagnostic AI 
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devices - is of crucial importance here. Potentially, assistive systems may need subdivision into 
additional categories that more specifically delineate the roles of human vs AI. 

2.4 AI system use environment  
The AI outputs, including for whom it is meant, the information provided, etc., may de facto dictate the 
use environment, including the operator, for the AI system:  

Use case setting Description 
Home AI system is used by the patient, and patient images him/herself without clinician or other 

operator assistance, or imaging by the general home healthcare provider. The output may be 
provided to the user (patient or home healthcare provider) or may be provided to a remote 
clinician. 

Non specialist (primary 
care or other non-
ophthalmologist) 

AI system is used by clinicians and operators, who have minimal experience with imaging the 
eye or the evaluations of ocular images or other input. The specific interpretation of the 
image may be important for that clinician to manage the patient in the context of a disease - 
evaluation of fundus photos for presence of diabetic retinopathy while managing diabetes - or 
to determine the presence or severity of a systemic disease or disease in another organ 
system than that being managed, such as determining neurological disease from retinal 
images.  

Specialist (Ophthalmologist 
or other eye care provider) 

AI system is used by clinicians and operators that have experience with ocular imaging and 
with evaluation of ocular images, but not necessarily with the specific AI output. An example 
is an AI system for retinal vessel analysis that outputs vascular beading or caliber metrics.  

Table 3. AI system use environment 

2.5 AI system human factor considerations 
Considering the use environment leads to consideration of human factors and impact and outputs of the 
AI system: 

Operator expertise level patient operated 
 untrained operator 
 ophthalmic photographer 
 Certified ophhalmic photographer 
Operator AI assistance level Differering levels of assistance during the imaging process 

and protocol. These may include evaluation of image quality 
evaluation, field, and sequence order. 
 

Table 4. AI System human factors 

2.6 AI system inputs 
An AI system achieves its intended use through sampling inputs that are analyzed via the algorithm. One 
goal of an AI system is to obtain a reliable, consistent output while minimizing the number of inputs 
(samples and types) to help improve robustness of an algorithm to changes in input signal quality and 
environment, among other factors. For ophthalmic images, inputs can range from image sets from an 
entire population with multiple images for each member of that population (for population risk 
assessment) to multiple images from a single patient (for diagnosis). The number and extent of these 
images are typically dictated by the intended use of the algorithm and the use environment.  A non-
exhaustive list of input types (image and non-image input types) follows: 

Input Characteristic Examples 
Image based  Image modality fundus imaging 
  slit lamp photography,  
  Optical Coherence Tomography 
  ultrasound 
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  scanning laser ophthalmoscope, topography 
  aberrometry 
  perimetry (functional) 
  multifocal electroretinagram (functional) 
  computed tomography, including orbital CT 
  magnetic resonance imaging, including orbital MRI 
 Image characteristics: 

while there is currently no required 
standard, standardization of image 
metadata such as defined by the DICOM 
standard 91 32, 42 will benefit these 
considerations 

Sample area 

  x, y or en face resolution,  
  X, y or depth/axial resolution 
  Field of view / area of retina covered 
  Number of fields 
  Stereo images vs mono 
  depth penetration limit 
  center wavelength(s) 
  momentary pupil diameter 
  compression characteristics 
  Ambient light level and other environmental conditions 
Non-image 
 

Input from modalities that do not meet the 
definition of a medical device (i.e., that are 
not FDA-regulated as a medical device), 
including  

patient history 

  medication history,  
  systemic comorbidities 
 Input from modalities that do meet the 

definition of a medical device (i.e., that are 
FDA-regulated)  

axial eye length 

  IOP 
  pachymetry 
  keratometry 
   visual acuity 
  heart rate 
  blood pressure 
  hemoglobin A1C (HbA1c 

Table 5. AI system inputs 

3 Ethical consideration for AI systems 
3.1 Bioethical foundation 
In addition to their clinical requirements, such as intended use, human factors, and input and output 
requirements, as set forward in section 2, AI systems will have to meet ethical requirements to function. 
This has both practical and philosophical importance: AI systems should follow ethical standards 
because the field of medicine has defined these standards as guiding principles for the appropriate 
delivery of healthcare; if AI systems are perceived as unethical or not bound by ethical constraints, 
stakeholders will not trust these systems, may refuse to engage with them, and this promising 
technology will fail to reach the populations it is designed to impact.  

Consequently, this section introduces the relevant bioethical foundation, 43 and then derives operational 
ethical dimensions or principles that can be used to create ethical requirements for AI systems.  
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All healthcare stakeholders, as well as society as large, are already concerned with the use of AI in 
healthcare, even when they understand the potential efficiency gains. They are concerned with AI 
systems’: 

• safety44  
• actual patient outcome benefit 45  
• mitigation of healthcare disparities rather than worsening them  
• potential for racial, ethnic or other inappropriate biases46  
• usage of patient data, including Personal Health Information, during training and 

implementation46 
• misuse, including off label use47  
• liability, in other words, who can be held accountable or liable for any patient harm 6 

To address these concerns, an ethical framework to identify ethical concerns before they become 
consequential is considered essential. Several such ethical frameworks for AI4 and autonomous AI3 have 
been proposed and discussed. We focus on the primary bioethical principles of non-maleficence, 
autonomy and justice, per Beauchamp and Childress. 48 Instead of the term justice, which is widely used 
in the ethics literature, but which may have legal connotations and thus lead to confusion, here we use 
the more familiar term equity instead to describe freedom from bias or favoritism. Accountability, while 
strictly speaking not an ethical concern, leads to related requirements primarily related to autonomy, 
and will be discussed as well.  

Such an ethical framework, as developed along the cited publications 3, 4, leads to the following: 

a) ethical requirements to be created, metrics derived from each of the ethical principles, such as 
population achieved sensitivity which is derived from equity below;  

b) the insight that it is non-orthogonal, as most ethical metrics are not independent axes, but 
instead partially overlap. If they were forming independent metrics / axes, this would allow an 
orthogonal framework;  

c) the requirement for a balance to be found or defined between those three ethical principles we 
focus upon (beneficence, equity and autonomy). Thus, a so-called Pareto optimum needs to be 
defined, as it is impossible to perfectly meet all 3 ethical principles.  

 
In effect, we use the three bioethical principles as (non-orthogonal) axes, along which to analyze and 
constrain AI systems, and define their ethical requirements. We emphasize that they exist in tension to 
each other, such that increasing one of them for a particular AI system may decrease another one. For 
example, for an autonomous AI for the diabetic eye exam, an acceptable balance needs to be found 
between a) improving access to a disadvantaged population (equity), while b) ensuring that increasing 
diabetic eye exam compliance leads to overall net-benefit in improvement in care, rather than just 
increasing diagnoses without access to treatment (non-maleficence), and c) while also maintaining 
sufficient transparency about the use of AI, training data limitations and data usage, so that patients can 
decide about their own participation, even if opting-out means losing access to AI benefits (autonomy). 
49 Theoretically, health disparities can be mitigated through adjusting the output of the AI system for 
those patients that are considered advantaged according to some metric. While potentially increasing 
equity of the AI system, such an approach will likely conflict with non-maleficence and autonomy.  

In addition, complicating ethical analyses, is that AI output will itself impact clinical workflows and 
clinical decisions, both of which may increase tensions between these bioethical axes. Much as 
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intention-to-treat is standard for Randomized Clinical Trial (RCT) evaluation, the downstream 
consequences from AI output, will need to be part of any ethical evaluation of a medical AI application. 

Put differently, bioethical analysis per se, along these dimensions, cannot prescribe the right balance. 
Rather, it offers a framework to guide and evaluate such decisions. The – “Pareto optimal” - balance 
between non-maleficence, autonomy and equity, has to be determined by all stakeholders. 

 

 

Figure 1. Balance and tension between the three bioethical principles non-maleficence, autonomy, and 
equity (justice). 

Once determined, such a balance results in (ethical) constraints on the design, validation and 
implementation of AI systems. Thus, we next go through the different bioethical principles, and show 
how these principles affect AI system requirements. Ultimately, the goal of such ethical requirements is 
to address and answer the valid existing concerns about AI systems in healthcare that were introduced 
above. 

3.2 Non-maleficence 
This principle, “first, do no harm,” is often interpreted as safety for the individual patient. It affects all 
aspects of autonomous AI systems including design, validation and implementation. An AI system’s risk 
of harm is affected by intended use, impact, inputs and outputs, and use context, as explained above. 
However, there are additional considerations unique to AI systems that affect probable risk of harm and 
are specific to AI and machine learning: design and development, validation, and post-market validation 
and monitoring. We will explain how these considerations are related to non-maleficence, and how 
these may lead to more detailed ethical requirements. There are many considerations not unique to AI 
systems and instead common to all systems involving software that are not discussed here.  
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3.2.1 Design of the AI system and non-maleficence 
In general, AI system design and development share many characteristics with non-AI software systems, 
and these requirements are laid down in standards like ISO 90003, 50 and for medical devices in ISO 
13485.51 In addition, there exist AI specific design considerations, related to insight into the AI, that 
derive from non-maleficence, and that can affect the risk of more or less harm to the patient. We 
differentiate three forms of insight that can be assessed for the design: explainability, the amount of 
insight the user (typically the physician) has into the clinical logic that determined the AI output for a 
specific patient; transparency, the amount of insight the user has into the clinical utility of the AI system 
for all patients; and validability, the amount of insight that exists into the non-clinical validity (analytical 
validity) of the AI system and which can be determined without clinical validation studies. The following 
are examples of relevant aspects that were discussed by FPOAI, that needs further consideration52: 

o Transparency – the degree to which the user / clinician of the AI system has insight into the 
requirements and limitations for the AI system inputs, its training data characteristics, and how 
the AI outputs are derived from the inputs for the intended use (i.e., for the specific disease or 
condition).1, 23 Transparency may also include how the AI system creator uses patient-derived 
data outside the use for this AI system’s intended use. For example, whether patient-derived 
data can be monetized after the AI system output has been derived. This aspect of transparency 
primarily serves autonomy, see below. 

o Explainability, while fundamentally related to transparency, refers more to how the output is 
related to clinical practice and scientific literature.  For example, is the output clinically 
meaningful (e.g., diagnosis of a known condition, presence of a particular lesion), rather than 
something not well understood (e.g., disease severity on a scale that has not been clinically 
validated or widely recognized)?  There are other aspects of transparency, beyond algorithmic 
functionality in the clinic, such as aspects relating to validation efforts (including analytical 
validation) that should be transparent to the user to help replicate the measured performance 
in real-world use. In fact, per the main principles of EQUATOR (which includes the CONSORT-AI 
extension),23, 24 complete, accurate, and transparent reporting is an integral part of responsible 
research conduct. Thus, trial reporting should include a thorough description of the input-data 
handling, including image acquisition, selection and any pre-processing before feeding into an AI 
system for analysis. This transparency is integral to the replicability of the intervention beyond 
the clinical trial in real-world use. 

o Validability – the degree to which the validity of the AI system can be assessed without clinical 
validation studies. That is, to what extent is it possible to self-validate an AI system without 
going through formal bench or clinical performance validation? This would include aspects like 
bugs, unresolved anomalies, open loops, etc. that would be found upon inspecting algorithm 
coding.  For cases of black-box systems, there is not as much that can be inspected, which would 
decrease the overall validability of the system.  Thus, validability qualifies our understanding of 
the analytical performance of the AI system and the impact of other systems on its 
performance. Examples of this may include the following: 
• AI algorithms structure and infrastructure, including unit level and code analysis, hardware, 

firmware, operating system 
• Use of federated hardware - dynamically allocated hardware – such as ‘the cloud’. As more 

and more AI algorithms move to cloud-based environments, this may remove execution of 
the code from the original ‘computational infrastructure’ (hardware/firmware/software) 
where it was validated. Federated, or cloud-based, execution environments, for example, 
using Amazon Web Services (AWS), or Microsoft Azure, on one hand make it easier to have 
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only a single version of the codebase, rather than multiple different versions, thus 
enhancing deterministic-ness. On the other hand, the same code may now be executed on a 
diversity of computational infrastructures. Executing a code fragment may have differing 
floating point and other operations results, lowering deterministic-ness of the code 
fragment. Mitigation may require pre-validation of the computational infrastructure for a 
specific code fragment, or instead, may require constraining the range of computational 
infrastructure on which such a code fragment may be executed. Pre-validation may 
maximize a computational infrastructure agnostic approach and thus allow a single 
codebase globally, as well as providing easier maintenance costs and higher redundancy. 

• Inspection of intellectual property that includes source code, patented and copyrighted 
components. Determining who has authority and expertise to evaluate validability, as well 
as what can be shared at which level, has large implications for AI creators. Such inspection 
may include algorithmic correctness verification.53 

• AI system’s use of priors. This may include analysis of whether the AI is designed as a black 
box (no validability) gray box (limited validability), or detector based (enumerated 
validability).3 Here, validability is primarily concerned whether analysis of catastrophic and 
graceful failures of the AI system shows unanticipated risks  - which has been shown to 
occur more often in black box than detector-based AI systems 54, 55 

• Full characterization of the training datasets at the patient level, which may include partial 
or full traceability to individual patients, as well as patient demographics and other patient 
specific characteristics. Compare the amount of information needed for validability to that 
needed for transparency, which could only require aggregate characteristics to be identified, 
for validability there could be more strict requirements. 
 

As shown, both explainability and transparency primarily involve the clinically oriented AI system user, 
while validability primarily involves AI creators, regulators, and non-clinical (technical) AI system users.  

3.2.2 Validation of the AI system and non-maleficence 
The ethical principle of non-maleficence also leads to requirements for non-clinical and clinical 
validation or testing of the AI system. Non-clinical testing may include: input data compatibility, 
discussed below; software verification, including software/firmware description, hazard analysis, 
software requirements specifications, architecture design specifications, and code traceability.51  

For clinical validation, common reporting standards, 24  CONSORT-AI,23 preregistration of study and 
analysis protocols, 56 10, 57  and validated relationship to patient management3 are important factors to 
enhance reproducibility. Given the many concerns about replicability, preregistration of the study 
protocol, in- and exclusion criteria, and statistical analysis, according to Good Clinical Practice (GCP), 58 
or other standards, should be considered. While potentially beneficial, such standards may not provide 
sufficient information to help inform regulatory evaluation and have not been recognized by FDA. See 
also FDA’s Recognized Consensus Standards. 25 An important decision is whether the AI system is locked 
before validation, as this affects the external validity and power of any validation study.  

The requirements for clinical validation should be commensurate with risk of harm to the patient. 
Determining the right balance between resource requirements and burden on AI creators for validation 
on the one hand, and risk of patient harm from AI system usage on the other hand, is essential, in order 
for patients, patient populations, and the wider healthcare system, to benefit from healthcare AI done 
the right way.  



14 
 

3.2.2.1 Validation study design 
As far as AI validation study design is concerned, prospective longitudinal or cross-sectional designs may 
be most appropriate for diagnostic AI validation studies. Incorporating as much of the real-world 
workflow as possible should be considered. Consider the importance of incorporating the actual 
workflow59 into AI system validation, and the risk of leaving workflow out, in a purely observational 
validation study, as first shown by Fenton and colleagues.3  In this pivotal retrospective cohort study, the 
outcomes of women undergoing breast cancer screening by a radiologist assisted by a previously FDA 
cleared (based on a study showing high accuracy of the AI compared to radiologists) assistive AI system, 
were compared to women who underwent breast cancer screening by a radiologist without an assistive 
AI. 60 When this assistive AI system was evaluated in the setting of actual workflow – where it assists a 
radiologist who makes the final clinical decision – outcomes were found to be worse for the women who 
underwent breast cancer screening with AI assistance. This finding and its implications highlight the 
importance of evaluating such technologies within the intended workflow. This applies to both the 
validation clinical trial design, as well as through continuing evaluation after actual deployment, as 
discussed below in 3.2.3. This also aligns well with the FDA’s, and other regulatory agencies, trend 
towards use of real world data and increasing emphasis on continuous efficacy assessment in the post-
market phase. 

As far as study design is considered, for diagnostic AI prospective longitudinal or cross-sectional designs 
may be appropriate. Such study designs allow hypothesis testing of the effect of the AI diagnostic on 
patient outcome, or where diagnosis has already been linked to (untreated) clinical outcome, of the 
diagnostic accuracy of the AI. For example, diagnostic accuracy hypothesis testing may allow a 
prospective cohort study design, while outcome hypothesis testing design will likely require a 
randomized clinical trial design. While a null hypothesis of “no effect” works well in interventional 
validation studies, a null hypothesis of “not informative” in an RCT may be less desirable for validation of 
diagnostic AI systems, and especially for validation of autonomous AI systems.61 62 Consider that such an 
RCT needs an arm where the patient management is based on the autonomous AI output, including the 
need for intervention. To emphasize, in this arm the patient management can only be based on the 
diagnostic output of the autonomous AI, without the possibility of overruling by a clinician. (If clinician 
overruling is not ruled out, the effect measured would be that of the clinician and the AI combined 
rather than of the autonomous AI only). The autonomous AI may incorrectly output a diagnosis leading 
to not treatment, leaving a subject untreated where treatment would have been beneficial. Whether or 
not the AI made the incorrect call can only be known when the study is complete. 63, 64 As mentioned, 
where diagnosis can be linked to outcome, such a design is not necessary and cohort design may be 
sufficient.  

3.2.2.2 Validation study reference standards 
Consideration should be given to how AI outputs are validated, in other words, what these outputs are 
compared against. For a diagnostic AI system, such a comparison will typically be made against an 
appropriate reference standard, based on its diagnostic indication - informing a healthcare provider or 
patient, to driving treatment decisions and making a definitive diagnosis. Such reference standards can 
be categorical or continuous.65  

From a non-maleficence principle, the effects of the AI system on clinical outcomes are most relevant, 
which may be indirect, as clinical outcomes may likely depend on medical decisions that are neither 
visible to nor affected by the AI system. Such clinical outcomes include events of which the patient is 
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aware and wants to avoid, including death, loss of vision, visual field loss, and other events causing a 
reduction in the patient’s quality of life. 66 The resources required to objectively quantify such clinical 
outcomes can be immense, particularly for chronic disease. In contrast, for acute diseases or 
interventions, clinical outcomes can be immediate and therefore relatively easier to obtain, such as 
visual acuity improvement in response to an AI that assists in refraction. For the many chronic diseases 
to which an AI may be applied, such as diabetic retinopathy, glaucoma or macular degeneration, clinical 
outcomes may take years to manifest. There has been great interest in the development of alternative 
outcomes, or surrogate endpoints,67 in the evaluation of investigational medical products to reduce the 
cost and shorten the duration of trials.  

For diagnostic AI, interest in surrogate endpoints has focused on prognostic standards, where a patient’s 
disease state has been related to a future clinical outcome. Obviously, these should be validated and 
directly correlated to clinical outcome.68 The advantage of a prognostic standard over a surrogate 
outcome as endpoint is that it is not dependent on clinical decisions outside the intended use of the AI 
system – in other words its output. For example, within ophthalmology, a prognostic standard is 
available for diabetic retinopathy, and can be determined by an autonomous diagnostic AI system. 
However, an expert will make clinical decisions after the diagnosis was determined, such as whether or 
not to perform laser or deliver anti-vascular endothelial growth factor (anti-VEGF) treatment. Such 
clinical decisions impact the ultimate clinical outcome, but were not made or influenced directly by the 
AI system. Thus, there is an advantage of using a prognostic standard, rather than outcome, to evaluate 
an AI system to not inadvertently diminish or underestimate the benefits of the AI for some decisions 
outside its control in the context of the clinical outcome.  

The Early Treatment of Diabetic Retinopathy Study (ETDRS) severity scale and the Diabetic Retinopathy 
Clinical Research network (DRCR.net) macular edema scale, as well as the AREDS macular degeneration 
scale, are representative of such prognostic standards.69, 70  Ideally, the strength of a prognostic standard 
is determined by the evidence available  to support its capacity  to predict progression, or manifestation 
of a condition or disease, or the benefit of a treatment or management. Its strength is also determined 
by any evidence that shows that treatments based on the prognostic standard correspond to effects on 
clinical outcome.71, 72 As the ETDRS, Diabetes Control and Complications Trial/Epidemiology of Diabetes 
Interventions and Complications Study (DCCT/EDIC),), and DRCR studies have established such evidence 
extensively, this applies to these prognostic standards.  

While requiring less time and fewer resources than developing and validating clinical outcomes, 
quantifying prognostic standards may still require considerable effort. While dependent on the intended 
use, for autonomous diagnostic AI studies, this is likely an important reason why clinician-derived 
reference standards, instead of prognostic reference standards, are widely used in AI validation.73A 
widely cited meta-analysis of the quality of evidence of AI accuracy, while mentioning the potential of AI 
to improve outcome - takes as a given comparison to clinician-derived ground truth – and the 
relationship to prognostic standards or clinical outcome is not considered. 22 And indeed, it is a major 
strength of the Collaborative Community CCOI and its disease-specific subgroups, that it has started 
discussing the development of such prognostic standards for disease areas of interest. 

Other factors that should be considered when evaluating potential reference standards - in addition to 
their validity or lack of that against outcome -: 
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• reproducibility of the reference standard – many studies have shown that multiple clinicians 
evaluate the same patient differently in 30-50% of cases74-76 

• repeatability – many studies have shown that the same clinician evaluates the same patient 
differently in 20-30% of cases; 74-76  

• diagnostic drift – studies have shown that clinicians from different regions, countries or 
continents evaluate the same patient differently up to 50%, leading to vernacular medicine as 
explained above 39 

• temporal diagnostic drift – studies have shown that clinicians systematically evaluating the 
same hypothetical patient differently over generations of clinicians.77  

As the evidence for a given treatment based on a given evaluation may have been derived decades ago, 
temporal drift may be hard to determine and difficult to correct for. We want to clarify that while 
temporal drift will typically be pernicious and undesirable, temporal diagnostic shift, where new, and 
better treatments led to a new prognostic standard, is often desirable. An example of temporal shift is 
the shift from the prognostic standard “clinical significant macular edema as defined by ETDRS” to the 
new prognostic standard “center-involved macular edema” which is derived from OCT, not fundus 
photographs, and was developed in conjunction with evaluating with novel anti-VEGF treatments for 
macular edema.70, 78 Optimally, correction for reproducibility and repeatability with strict evaluation 
protocols and independent verification where possible is indicated. 66  

Given these considerations, and depending on an AI system’s role, output type, SAMD risk 
categorization and risk of harm to the patient, certain types of reference standards may be 
differentiated based on the rigor or validity of the reference standard (Table I). While such a hierarchy, 
as shown here, may be useful for consideration of reference standard differences, there is no required 
level for a specific intended use. Generally, these Levels I-IV can be related to their rigor, with  
Level I as having the most rigor. Typically, an AI system that carries more risk of harm, such as 
personalized treatment (e.g., Artificial Pancreas), as a stand-alone diagnosis, or determination of disease 
level used in treatment decisions, would be compared to a more rigorous standard. It, therefore, 
remains up to regulatory agencies around the world to balance the intended use and risk category of the 
AI system, and potentially include the reference standard Level in this balance.  

• Level I: A reference standard that is either a prognostic standard, clinical outcome, or a 
biomarker standard. If a prognostic standard, it is determined by an independent reading 
center. If either a prognostic standard or a biomarker, it is validated against clinical outcome, 
and temporal drift, reproducibility, and repeatability metrics are published.  

• Level II: A reference standard established by an independent reading center. Temporal drift, 
reproducibility, and repeatability metrics are published. A level II reference standard has not 
been validated against clinical outcome or a prognostic standard.  

• Level III: A reference standard created from the same modality as used by the AI, by 
adjudicating or voting of multiple independent expert readers. The readers are documented to 
be masked, and reproducibility and repeatability metrics are published. A level III reference 
standard has not been validated against clinical outcome or a prognostic standard, and does not 
have known temporal drift. 

• Level IV: All other reference standards, created by single readers or non-expert readers, and 
may be without an established protocol.  A level IV reference standard has not been validated 
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against clinical outcome or a prognostic standard, does not have known temporal drift, 
reproducibility or repeatability metrics, and the readers may not have been masked. 

Table 6: reference standard levels 

 

For level I and II reference standards, there is no reference to modality, as the modalities are entirely 
determined by the requirements for outcome, prognostic standard or reading center.  

While a higher-level reference standard may at first glance seem more desirable, in many cases, this 
may not be the preferred choice. Such a higher level may not be available or even unachievable, and the 
requirement for a higher level needs to be balanced with the burden to obtain it. An example is 
Retinopathy of Prematurity (ROP), where the only prognostic standards are derived from expert 
clinicians – i.e., level II, are available. At this point in time, it is ethically impossible to determine a level I 
standard for ROP, and in fact Level II is the accepted reference standard in the clinical community. 
Collecting a Level I standard would require a study that may leave some treatable patients untreated, 
depending on how accurate the AI under study actually is, and thus requiring a level I for an AI creator 
would be an undue burden, and frankly an impossible hurdle to overcome. 

It is worth reemphasizing that a) the level of reference standard is entirely independent from the AI 
system or its intended use; b) different intended use cases may require different levels of reference 
standard; and c) the level of reference standard is evaluated entirely separate from the minimally 
acceptable criteria for performance of the AI. The minimally acceptable criteria can only be understood 
for a given reference standard level. 

3.2.2.3 Minimal acceptable criteria for validation 
The minimal acceptable criteria for the AI system are the decision cutoffs for determining the safety, 
and efficacy of the AI, in hypothesis testing clinical trials, to estimate non-maleficence. Such minimal 
acceptable criteria include combinations of sensitivity, specificity, area under the Receiver Operator 
Characteristics (ROC) curve.  While the concept of decision cutoffs for safety and efficacy of an AI system 
may be broadly accepted, it is also a major factor in the review processes by regulatory agencies.  

As an example, for the first autonomous De Novo AI authorized by FDA, two hypotheses had to be 
confirmed in a preregistered clinical trial, with sensitivity, specificity characteristics all exceeding 80% at 
the population level. This corresponded to study-based endpoints of 85%for sensitivity andand 82.5% 
for specificity.13  

Theoretically, such minimal acceptable criteria can be derived analytically, with the goal to minimize 
subjectivity and maximize external validity. Thus, approaches have been developed to come up with 
analytical solutions for diagnostic algorithm endpoints, including Pareto optimization, Youden and 
Euclidean indices for sensitivity – specificity combinations79-82, quantitative cost-benefit derivative 
analysis, as well as (modified) Angoff approaches.83, 84 Specifically, the (modified) Angoff approach has 
been validated for setting testing thresholds in educational settings. These analytical approaches are 
helpful in informing the choices to be made, by improving understanding of risks and benefits of any 
choices made.  
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Alternatively, minimal acceptable criteria for a diagnostic AI can be set to conform to existing diagnostic 
procedures. For example, when excluding pulmonary embolism, test negatives should have a 3-month 
thrombo-embolic risk of less than 3%, which is derived from the equivalent risk after a negative 
pulmonary angiography, the gold standard.85 Understanding of the accuracy of comparable diagnostic 
processes performed by human clinicians and other human experts should be a requirement (note that 
the current diagnostic standard-of-care may not necessarily involve a clinician in the future as AI 
systems may, at some point, be considered as standard-of-care). 

In contrast, the existing literature does not offer guidance on these minimal acceptable criteria for an 
autonomous AI performing the diabetic eye exam, as the standard of care by ophthalmologists only 
reaches 33% or 34% sensitivity.75, 76 

Given such widespread lack of scientific evidence for specific minimal acceptable criteria, deciding these 
minimal acceptable criteria involves ethical, cost-effectiveness and other risk-benefit trade-offs by 
patients, clinicians, and payors. Such decisions will typically require the involvement of domain experts. 
As examples, minimally acceptable criteria for screening mammography were previously determined by 
a set of domain experts using a modified Angoff approach;84 and a sampled survey of pediatricians was 
used to estimate the minimally acceptable sensitivity threshold for a ‘streptococcal pharyngitis test’ in 
children. 86 For such approaches to work, it is important that the experts involved fully grasp the 
spectrum of risks and benefits for patients of each alternative set of criteria. This may not always be the 
case: in the latter study, 80% of pediatricians proposed a sensitivity of at least 95%, which was not 
achievable by any feasible test under consideration.86 The structured collection of patient preferences, , 
also known as  Patient Preference Information (PPI) could also be included in shaping these decisions.87 
Thus, the following stages can be considered in isolation or in the aggregate for setting minimal 
acceptable criteria:  

• Literature or meta-analysis review of existing minimal acceptable criteria, and assignment of 
weights to the consequences of test misclassifications, according to one or more metrics such as 
cost or quality-adjusted life years (QALY)). As an example, estimate whether the consequences 
of missing a case, such as increased morbidity or cost at a later stage when the disease 
manifests more clearly, outweigh the consequences of misclassifying a non-case as a case, such 
as unnecessary radical diagnostic or treatment decisions with major side-effects. Scientific 
evidence of comparable diagnostic processes, performed by human clinicians and other human 
experts, should be included if available, or may need to be collected, if not available. 

• Analysis of a representative spectrum of sensitivity and specificity combinations, and 
determination of the downstream cumulative weight of consequences for patients88, 89 and 
other stakeholders in the healthcare system, including PPI. 

• A process of domain experts (e.g., Network of Experts)90 can potentially generate consensus on 
minimal acceptable criteria. For example, using vignettes that condense analytical evidence, to 
ensure minimal bias among domain experts.   

 
3.2.3 Post-market monitoring of AI systems and non-maleficence 
Monitoring of the safety and efficacy of an AI system is important because it affects non-maleficence. 
Real-world performance monitoring after implementation can be achieved by putting a prospective 
monitoring protocol in place. Such a prospective monitoring protocol may be agreed upon by a 
regulatory agency, for example, implemented as part of a comprehensive Quality Management System 



19 
 

following 21 CFR 820, and accommodate user feedback, complaints, and reportable events. In addition, 
other AI system characteristics that are within creators’ control such as usability, user experience, 
product performance, and necessary safety controls, including a comprehensive framework for 
cybersecurity, data protection, and data privacy, may also be monitored.    

To ensure continued acceptable performance of an adaptive AI system, for example, a prospective 
monitoring protocol may require the AI system output to be compared to the same reference standard 
that was used in (pre-market) validation to be able to determine whether or not it still meets safety and 
efficacy standards in the post implementation real world. As discussed above, more rigorous, higher 
level, reference standards often require substantial resources, for patients and creators. Real world 
monitoring may require the collection of this reference standard for each monitored patient  – which 
may diminish the reasons why the AI system was implemented in the first place, such as improved 
access, lower cost, and patient friendliness. Thus, prospective monitoring protocols will have to find a 
balance between burden on AI creators, as well as patients, on the one hand, and non-maleficence on 
the other.    

3.2.3.1 Changing an AI system after validation 
As an AI system is used on patients and continuous efficacy monitoring is in effect, there will be 
opportunities to improve the AI system technical specifications in terms of safety, efficacy, and/or 
equity (see Equity section). AI systems – in other words, SaMD that use AI or machine learning - have the 
unique capacity to be updated after implementation. In fact, if an AI system is not locked after 
validation, there is also potentially unlimited configurability. 

It is important to determine that changes to the technical specifications, while intended to improve the 
AI system, do not negatively affect the ethical principle of non-maleficence.  Traditionally, from a 
regulatory perspective, almost all technical specification changes to a SaMD that affect safety or 
effectiveness may require a new validation; cybersecurity changes may be the only ones currently 
possible without such full validation, depending on how one interprets current 91FDA guidance.91  

Thus, safely updating the AI system requires that appropriate controls and validation methodologies are 
in place. These controls and methodologies will be dependent on both the type of change, as well as on 
the risk of patient harm, and we differentiate the following types of changes:  

• Changes to AI system computations 
These include 
o Changes to pre- and postprocessing algorithms 
o Changes in algorithmic infrastructure, including hardware and software. 
o Changes to AI algorithm architecture, including to improve performance 

• Types of classifiers 
• Hyperparameter and parameter (including model weights) values 
• Training data 

• Changes to AI system Input  
While keeping the output type constant, these are some examples of such changes 
o Change in imaging system, such as optical, sensor, image compression, and imaging protocol; 
o Adding other information about the patient to the inputs, such as pulse, VA, IOP, that are used 

along with the original image by the AI to make a final determination. 
• Changes to the AI system Output e 
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While keeping the input types unchanged, examples inclue 
o marking regions of interest when previously only a normal/abnormal output was validated 

• Changes to AI system indications and intended use 
An example of change to intended use is accumulating scientific evidence that an AI system that was 
validated as a “referral tool” and authorized by a regulatory agency as such, can actually be used as 
a “diagnostic tool”: as it becomes more accepted in the clinical community and its performance 
thresholds are adjusted to support such use. Other examples include 
o Inclusion or exclusion criteria - such as expansion to people with different risk of having the 

disease, age groups, ancestry, race or ethnicity that were not accounted for in the design or 
validation of the AI system to be improved.  

o Disease level or threshold  
o Disease type, for example macular degeneration, when previously validated for diabetic 

retinopathy. 
 

An important component of AI system changes is the method of change validation that is used to 
establish safety, efficacy and equity of the changed AI system. AI systems may differ in the data that was 
collected for their validation. At one end of the spectrum of validations, a recent autonomous AI system 
required a full preregistered clinical trial – a pivotal trial - comparing against a prognostic standard.13  
Depending on the patient risk of harm, and the type of change, as set forth above, the following 
categories of such methods can be discerned. As an aside, many of these methods require the pivotal 
trial data, of the index AI system, to have been escrowed under a so-called algorithmic integrity 
protocol13:  

- Regression identity testing, to establish, non-probabilistically, that for any input data, changes to 
the AI system do not result in any change whatsoever in diagnostic output. 

- Bench validation, to formally test the statistical hypothesis that a change that can impact the AI 
algorithm, for example a change in GPU, has no impact on the diagnostic output for any input 
from a given group of subjects. 

- Recursive validation, to formally test the statistical hypothesis that for example, a change in 
Input Type, such as a change in imaging system, has no impact on the diagnostic output, 
compared to the index AI system output. Recursive validation uses the index AI system output 
as the reference standard. 92It is similar to a reproducibility study,92 where the output of the 
index AI system is compared to a modified AI system with the inputs slightly perturbed. 

- Performance (safety, effectiveness, and equity) bracketing. Analytically, the maximum change in 
performance metrics caused by a specific change in the algorithm can be calculated and 
bounded quantitatively; can be used to ensure maximum change continues to be within 
expectations and also exceed the minimally acceptable criteria that were determined for the 
pivotal trial. 

- Escrowed validation study iteration, to statistically test the hypothesis, that an AI system is not 
inferior, or possibly superior, to the index AI system. This can be achieved by reusing the inputs 
of the index AI system validation dataset that were previously escrowed, and comparing the 
outputs of the changed system to that escrowed, established reference standard. There are 
limits on the number of iterations that can be achieved, as explored by Ioannidis et al, 93 as each 
dataset reuse increases the potential for overfitting to the escrowed validation data.94 The 
degree to which escrowed dataset reuse leads to false positive claims and overfitting can be 
quantified through systematic frameworks, including the dataset positive predictive value 
(DPPV) framework. The success of this approach depends on parameters including the number 
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of available escrowed validation subjects, type 1 and type 2 error rates, and degree of 
dependence between outputs of the index AI system and the modified AI system. The validation 
study needs to have been escrowed as part of the preregistration algorithm integrity process for 
this to be a valid methodology.13, 95  

- Escrowed Validation study expansion, to statistically test the hypothesis that the AI system is not 
inferior or possibly superior, due to a change in target patient population. Escrowed validation 
study expansion reuses the inputs of the index AI system validation dataset that has been 
escrowed, expands this dataset with subjects from the new target patient population, and then 
compares the outputs of the changed system to the reference standard. Either the identical 
workflow can be used, or a secondary analysis on the effect, if any, of a change in workflow is 
required. As new subjects are added to the original study for this expansion, information is 
gained and this may compensate for the information loss and risk of overfitting from dataset 
reuse.95 As with Escrowed validation study iteration, it is critical to monitor the overall degree of 
dataset reuse. 
 

Where “index AI system” refers to the AI system that was validated in a pivotal trial. The term “escrowed 
under an algorithm integrity protocol” implies that the human subject input data (including the 
corresponding reference standard), collected in this pivotal trial, is kept inaccessible by a third 
independent party. Thus, there will be a complete, arms length, documented record of any access or use 
of this data by the index AI system developer, for example for retraining a modified AI system, 
somewhat analogous to the concept of clinical trial preregistration. 

The above studies can, ofcourse, be performed both by the AI creator, or by independent research 
groups. 

3.3 Autonomy 
Analysis of autonomy of the patient with respect to AI leads to at least two important considerations. 
First, considerations of the use of patient-derived data, which applies to both training data for the AI 
system algorithms, as well as to implementation, where the AI system collects this data to determine its 
outputs.  

Transparency may include how the AI system creator uses patient-derived data outside the use for this 
AI system’s intended use. An example is insight into whether patient-derived data is monetized for other 
purposes than the diagnosis by the AI. Autonomy is greater when the collection of patient-derived data 
is lawful and in compliance with laws and regulations and best practices. This may include compliance 
with the Health Insurance Portability and Accountability Act (HIPAA), the Health Information Technology 
for Economic and Clinical Health ((HITECH) act, and other data security aspects of 21 CFR 50, the 
Declaration of Helsinki, as well other statutory and regulatory rules in place, in a manner that is 
transparent about the purpose and scope for which the data will be used.96 Ideally, patient-derived data 
used by AI creators is traceable to patient authorization to use that data. Those involved in the design of 
AI systems should have accountability with respect to protecting patient rights as stewards of patient-
derived data. Auditable processes and security controls aid in ensuring that patient data is being used in 
accordance with the scope for which it was authorized, and to protect the data from unauthorized use 
or access.  

A current controversy is the reward or recognition of clinicians contributing a reference standard to 
patient-derived data incorporated in the intellectual property of an AI system. Such contributions may 
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include their diagnostic work recorded in medical records, subsequently used to train or evaluate an AI 
system. 97 Such ownership collides with rising public desire for increased control over, and privacy with 
respect to, electronic data and emerging regulations to address these (General Data Protection 
Regulation (EU) 2016/679 (GDPR), and the California Consumer Privacy Act, Cal. Civ. Code § 1798.100 et 
seq.), as well as increasing patient activism for recognition for contributions to scientific advances.  

Secondly, liability for the AI system malfunction is related to autonomy. Abramoff, et al, previously 
proposed that creators of autonomous AI systems assume liability for harm caused by the diagnostic 
output of the device when used properly and on-label.3 In their paper, they state that this is essential for 
adoption – it may be inappropriate for clinicians using an autonomous AI, to make a clinical decision 
they are not comfortable making themselves, to still have full medical liability for harm caused by that 
autonomous AI. This view was recently endorsed by the AMA in its 2019 AI Policy.6 Such a paradigm for 
responsibility is more complex for assistive AI, where medical liability may fall only on the provider using 
it – as they are ultimately responsible for the medical decision, or on a combination of both, where even 
the relative balance sheets of the AI user and the AI creator come into play. 

Meanwhile, as Abramoff, et al, proposed elsewhere,3 medical decisions by autonomous AI on individual 
patients typically cannot be unequivocally labeled as correct or incorrect, especially in chronic diseases 
where outcomes may emerge years later. On populations of patients however, the medical decisions can 
be compared statistically to the desired decisions, for example to claimed correctness, and it is thus 
there the liability will be focused. Another issue is that, while autonomous AI is preferably compared to 
patient outcome, or prognosis, these comparisons require enormous resources that will be not available 
for the individual patient where liability is at stake. Instead, the autonomous AI decision may be 
compared to an individual physician or group of physicians, lacking validation and thus, with unknown 
correspondence to outcome or surrogate outcome. As an aside, this can be an issue also for so-called 
continuous learning AI systems. 

These distinctions will need to be resolved as various AI applications move forward. The legal 
responsibility for an AI system built in partnership with a large healthcare system and intended to be 
used on its patient population is, by definition, more diffuse and likely to vest in the sponsoring 
healthcare system or with some comparative or contributory analysis of fault. A privately designed 
system, sold as a finished product, may need to bear its own responsibility for autonomous output, 
absent superseding or intervening causation.  

Responsibility for proper use and maintenance of the AI system, consistent with terms of service and 
FDA or other regulatory agency labeling, remains with the providers – the practice of medicine.   

Finally, the output of the autonomous AI system, while valid as a diagnostic record from a regulatory 
perspective, is not currently defined as a medical record, when it is not signed off on by a physician. 
What is and is not, and who can and cannot, create a medical record is determined, in the US, primarily 
by the State Medical Boards or their equivalent. At present, such Boards do not consider an autonomous 
AI output to have the same medicolegal status as physician documentation, and the legal status of 
reports generated by AI has been brought to the attention of the US Federation of State Medical Boards.  
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3.4 Equity 
The third bioethical principle is Equity – we mentioned above that we use this term rather than the 
traditional bioethical term of “Justice” for this concept. Equity primarily concerns itself at the impact on 
the patient at the population level, beyond the impact on an individual patient.  

In the context of AI, this translates to estimating its differential impact of safety, or any other 
characteristics of the AI system, on members of a group with respect to members of other groups, called 
“health disparities”.For example, inappropriate bias of the AI system may result in the AI system being 
less effective for some group, based on race,98, 99 ethnicity, sex,100 age, income, and other categories, than 
another, even though on average it was found to be safe. Any medical process has the potential to 
either increase or decrease health disparities, depending on how it is used. Because of the scale at 
which AI systems operate, their potential to increase or decrease disparities is also tremendously 
magnified. 

Inappropriate bias, increase in health disparities, and thus decreased Equity can exist across the entire 
AI pipeline, as Char, et al, outlined,4 including in the choice of intended use of the AI, its design, its 
validability, its validation and the choice of reference standards, as well as how, and where, it is 
implemented. For example, as far as design of the AI is considered, lower validability of a black box 
algorithmic approach, makes bias harder to anticipate, detect and mitigate, when it replaces explicit 
priors with properties that cannot be analyzed and evaluated. Another example with respect to design, 
incomplete or unrepresentative training data, or relying on complete and representative data that 
reflects and reproduces (at scale) pre-existing healthcare bias, increases the risk worsening health 
disparities. As far as validation is concerned, selection of study sites, biased inclusion and exclusion 
criteria, can all decrease validity for certain subgroups, and thereby exacerbate health disparities. 
Finally, as far as implementation is concerned, implementation of the AI system preferably in some 
locations may affect access to disadvantaged groups, again increasing health disparities. 

When analyzing validation, this can be used to estimate equity by determining or testing for the 
presence or absence of an effect of predefined characteristics of subgroups on the characteristics of the 
AI system, such as sensitivity or specificity. Such characteristics will typically include race, ethnicity, age 
and gender on sensitivity and specificity.101 In addition, differential usage in subgroups will affect equity, 
and such effects can be compared using metrics like population achieved sensitivity (see below).98   

As mentioned, when analyzing the Equity dimension of an AI system, particularly in the context of health 
disparities, it is useful to consider the implementation context. Different diagnostic processes, including 
AI systems, may differ in patient friendliness, availability, access and direct and indirect cost, even with 
equal sensitivity and specificity (i.e. equally high non-maleficence).   

With respect to intended use and implementation in the context of Equity, the goal of the diagnostic 
process at the population level, is to identify the maximum number of true disease cases identified in 
that population. A given diagnostic process, like a high performing AI system, may have a high sensitivity 
– in other words, non-maleficence is maximal for those patients that have access. However, if for 
example this AI system is only available in one place, the number of cases identified will not be maximal, 
as many in the population will simply never undergo its diagnostic process, and Equity is much lower.   

Population achieved sensitivity, or Access corrected sensitivity, is used to analyze such effects on Equity. 
In other words, while an AI system – and any diagnostic process - with very high sensitivity is attractive 
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from an individual perspective, if only few people have access to the diagnostic AI, the population 
achieved sensitivity 𝑃𝑃𝑃𝑃𝑃𝑃, or effective sensitivity at the population level, will be much lower, and 
concomitantly its equity:  

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑠𝑠𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐  

𝑐𝑐𝑝𝑝𝑐𝑐 + (1 − 𝑐𝑐)𝑝𝑝𝑛𝑛𝑛𝑛�
≅ 𝑠𝑠𝑐𝑐𝑐𝑐 

Where 
𝑠𝑠𝑐𝑐 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  
𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
𝑝𝑝𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
𝑝𝑝𝑛𝑛𝑛𝑛� = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 

When we assume 𝑝𝑝𝑐𝑐 ≅ 𝑝𝑝𝑛𝑛𝑛𝑛� , i.e. the prevalence of the disease is the same in the non-adherent as in the 
adherent part of the population, we can use the simplified estimate  𝑠𝑠𝑐𝑐𝑐𝑐. 102For example, if compliance c, 
with the diabetic eye exam, is 15%,102, and the minimal acceptable sensitivity is 85%,13 the population 
achieved sensitivity (PAS) = 0.13. In other words, only 13% of all cases in the population will be 
identified correctly with this diagnostic system. In many cases, the prevalence in the part of the 
population that does not undergo the AI system is actually higher than in the adherent population, so 
that this estimate of PAS forms an upper bound. It is useful to consider PAS in determining minimal 
acceptable sensitivity. A more accessible AI system may have lower 𝑠𝑠𝑐𝑐 but still result in higher PAS as 
adherence can expected to be higher. 

4. Conclusions 
The considerations in this article are a useful first step in the development of a bioethically sound 
foundation, based in non-maleficence, autonomy and equity, of considerations for the design, validation 
and implementation for AI systems CCOI’s FPOAI exceptional and diverse experience means it is well 
placed to develop and evaluate such a foundation. Considerations of FPOAI’s future consensus 
statements and cooperation among AI creators, industry, ethicists, 3, 4 clinicians, patients, and regulatory 
agencies, is key to facilitating rapid innovation of AI technologies and their successful implementation in 
clinical medicine. Such global collaboration will adhere to bioethical principles, guide development and 
use of clinical AI, helping to make fundamental improvements in accessibility and quality of health care, 
decreasing disparities and lowering the overall cost of health care.  

Appendix A 
FPOAI members as of writing 

Michael Abramoff, MD, PhD (Chair, University of Iowa) 

Malvina B. Eydelman, MD, (CDRH, OHT-1, US Food and Drug Administration) 

Brad Cunningham, MSE (CDRH, OHT-1, US Food and Drug Administration) 

Bakul Patel, MBA (CDRH, DHCoE, US Food and Drug Administration) 

Karen A. Goldman, PhD, JD (OPP, US Federal Trade Commission) 

Danton Char, MD MS (Stanford University, CA) 

Taiji Sakamoto, MD (Kagoshima University, Japanese Ophthalmological Society) 
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Barbara Blodi, MD (Department of Ophthalmology, University of Wisconsin)  

Risa Wolf, MD (Department of Pediatrics, Johns Hopkins University) 

Jean-Louis Gassee (Apple) 

Theodore Leng, MD, MS (Department of Ophthalmology, Stanford University School of Medicine) 

Dan Roman (Director Diabetes Measures, National Committee of Quality Assurance) 

Sally Satel (Yale, AEI, Data usage ethics) 

Donald Fong (Kaiser Permanente) 

David Rhew (Chief Medical Officer, Microsoft) 

Henry Wei (Google Health) 

Michael Willingham (Google Health) 

Michael Chiang, MD, PhD (Director, National Eye Institute) 

Mark Blumenkranz, MD (Facilitator, Stanford University) 

While the members’ main affiliations are stated, they do not in every case represent their 
institution/company.  

CCOI Executive Committee 

Michael Abramoff, MD, PhD 

Mark Blumenkranz, MD 

Emily Chew, MD 

Michael Chiang, MD 

Malvina Eydelman, MD 

David Myung, MD, PhD 

Joel S. Schuman, MD 

Carol Shields, MD 
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